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A closed-form analytic solution for the PL–SN equations
of neutron transport in slab geometry
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70803, USA

Received 9 April 1996, in final form 26 June 1996

Abstract. A closed-form analytic solution for the discrete-ordinates equations of neutron
transport is obtained without recourse to integral transforms. The method is applied to the slab-
geometry problem in the one-speed approximation using a one-sided set of boundary conditions.
The solution is valid for any number of discrete ordinates and all possible orders of anisotropic
scattering, and it does not requirea priori knowledge of the particular solution. A set of algebraic
expressions for the neutron balance at the boundaries of a slab is obtained and used as a basis
for one iterative and one non-iterative numerical algorithm that are valid for all homogeneous
and heterogeneous slabs. The numerical solutions are error free other than the roundoff of the
computing system. The roundoff error is minimized by the Effective Albedo and Transmittance
method.

1. Introduction

In the past few decades, a great amount of effort has been devoted to the development
of methods that minimize the errors in neutron-transport computations using the discrete-
ordinates method. In this endeavour, very few attempts were made using exact analytical
methods. The original development of the discrete-ordinates method for radiative transfer
by Chandrasekhar [1] was reproduced by Davison [2] with a fair amount of detail relevant
to the neutron-transport problem. More recently, attempts were made, using the analytical
method, to obtain exact expressions particularly useful for numerical applications in neutron
transport in slab geometry [3, 4]; the method was subsequently implemented in the two-
dimensional problem in plane geometry [5]. Other attempts exploited the integral transform
method [6, 7].

The method outlined by Davison consists of a finite series of exponentials that satisfy
the one-dimensional discrete-ordinates equation in plane geometry. The terms of the series
are defined with two sets of parameters: a set of terms for the exponential argument and a set
of coefficients. The terms of the first set are the zeros of a polynomial and the coefficients
are to be determined from the boundary conditions. The half-space medium-boundary
conditions and the vacuum-boundary condition were discussed. A marginal discussion
about the continuity of flux-boundary condition was provided with an incomplete account
on the treatment of the fixed source [2].

A more recent analytical approach exploited the spectral method [4]. The solution to
the discrete-ordinate equation is exact but inherently iterative. The major shortcoming of
the method is, as pointed out by its authors, its inability to operate with more than eight
discrete ordinates. On the other hand, the handling of the high-order anisotropic scattering
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7138 C H Aboughantous

was not addressed convincingly. As to the handling of the source term, the method requires
a priori knowledge of a particular solution to the problem. Although the solution is carried
out in slab geometry, it was successfully implemented in the Cartesian two-dimensional
geometry [5].

In another recent approach the Laplace transform was used to obtain analytic solutions to
the one-dimensional plane-geometry problem. This method is applied to theP1–SN problem
in the one-speed approximation [6] andP0–SN multigroup problem [7]. The method is valid
in homogeneous and heterogeneous slabs and seems to be doing well forN 6 8 in a near-
pure scatterer medium and fairly well in a slightly absorptive but otherwise thin media.

In this paper the author pursues a direct approach to obtain a closed-form analytic
solution for the generalPL–SN problem of neutron transport in slab geometry and in the
one-speed approximation. The solution obtained by this method accounts for anisotropic
scattering up toL = N − 1.

The proposed closed-form solution was converted into algebraic expressions that are
nothing but expressions for the neutron balance at the boundaries of the slab. Two numerical
algorithms based on this form of the solution are proposed, the first one is iterative and
the second is non-iterative, and both of the algorithms are valid for all homogeneous and
heterogeneous slabs. The performance of this method is excellent even in absorbing and
thick media.

2. Reduction of the discrete-ordinates equations

2.1. Matrix representation of the governing equation

The general form of the one groupPL–SN discrete-ordinates transport equation with no
fission in slab geometry may be written in the form

µm∂x9m + σt9m =
N∑

n=1

{ L∑
l=0

2l + 1

2
σlwnPl(µm)Pl(µn)

}
9n + qm (2.1)

where∂x is the symbol of derivative with respect tox, and

9m ≡ 9(x, µm); m = 1, 2, . . . , N (N even)

µm = directional cosine on(−1, 1) − {0}
wn = weight for Gauss–Legendre quadrature

Pl(µm) = Legendre polynomial,l = 0, 1, 2, . . . , L 6 N − 1

σt = macroscopic total cross section

σl = lth scattering moments

qm ≡ q(x, µm), a fixed source.

The domain of definition of (2.1) is a homogeneous slab of thicknessh, bounded by the
0-boundary atx = 0 and by theh-boundary atx = h. We will assume that (2.1) is defined
on a consistent set of cross sections:

{σt , σl} ≡ {σt , σl; l = 0, 1, . . . , N − 1 | σt > σ0 > |σ1| > · · · > |σN−1| > 0}. (2.2)

Condition (2.2) prevails throughout the analysis.
Equations (2.1) are a set ofN coupled equations subject to boundary conditions we

will introduce later. We split this set into two subsets ofN ′ coupled equations, one for



A closed-form analytic solution forPL–SN equations 7139

the backward direction and the other for the forward direction. Superscript minus and plus
signs will be used to designate backward and forward properties, respectively, as follows:

Forward direction:µ+
m ≡ µm > 0 9+

m ≡ 9(x, µ+
m)

Backward direction:µ−
m ≡ −µm 9−

m ≡ 9(x, µ−
m)

where m ∈ [1, N ′], µN ′ > · · · > µ2 > µ1 > 0, N ′ = N/2. These notations will be
used throughout and the characterization forward and backward properties should always
be understood in the context of these definitions.

The following two sets of backward and forward equations can be obtained from (2.1):

µ−
m∂x9

−
m + σt9

−
m =

N ′∑
n=1

{( L∑
l=0

2l + 1

2
σlwnPl(µ

−
m)Pl(µ

−
n )

)
9−

n

+
( L∑

l=0

2l + 1

2
σlwnPl(µ

−
m)Pl(µ

+
n )

)
9+

n

}
+ q−

m (2.3)

µ+
m∂x9

+
m + σt9

+
m =

N ′∑
n=1

{( L∑
l=0

2l + 1

2
σlwnPl(µ

+
m)Pl(µ

−
n )

)
9−

n

+
( L∑

l=0

2l + 1

2
σlwnPl(µ

+
m)Pl(µ

+
n )

)
9+

n

}
+ q+

m. (2.4)

Owing to the symmetry properties of Legendre polynomials the following parameters may
be defined:

cl = σl/σt < 1

Wln = (2l + 1)clwn (2.5a)

WlnPl(µ
+
m)Pl(µ

+
n ) = WlnPl(µ

−
m)Pl(µ

−
n ) = Glmn ∈ (−1, +1) (2.5b)

WlnPl(µ
+
m)Pl(µ

−
n ) = WlnPl(µ

+
m)Pl(µ

+
n ) = (−1)lGlmn (2.5c)

m, n ∈ [1, N ′].

The Glmn parameters enjoy the following properties:

Pure absorber:Glmn = 0

Isotropic scattering:G0mn = W0n

∀l, m, n > 0

∀m, n > 0

}
. (2.6)

Multiply (2.3) by −h/µm and (2.4) byh/µm and rearrange to obtain

∂ζ9
−
m = βtm

2

N ′∑
n=1

{(
2δmn −

L∑
l=0

Glmn

)
9−

n −
( L∑

l=0

(−1)lGlmn

)
9+

n

}
− Q−

m (2.7)

∂ζ9
+
m = βtm

2

N ′∑
n=1

{
−

(
2δmn −

L∑
l=0

Glmn

)
9+

n +
( L∑

l=0

(−1)lGlmn

)
9−

n

}
+ Q+

m (2.8)

where

βtm ≡ hσt

µm

m = 1, 2, . . . , N ′ (2.9)

Q±
m ≡ h

µm

q±
m(ζ ) (2.10)

ζ = x

h
∈ [0, 1], the new dimensionless independent variable

δmn = Kronecker delta.
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In ζ coordinates, the slab is defined by its 0-boundary atζ = 0 andh-boundary atζ = 1.
Define the dimensionless parameters:

amn ≡ βtm

2

[
2δmn −

L∑
l=0

Glmn

]
(2.11)

a∗
mn = βtm

2

L∑
l=0

(−1)lGlmn. (2.12)

It can be shown that, if

ωo
mn = βtm

2

(
δmn −

L∑
l=1

Glmn

)
odd l

(2.13)

and

ωe
mn = βtm

2

(
δmn −

L−1∑
l=0

Glmn

)
even l

(2.14)

then

amn = ωo
mn + ωe

mn

a∗
mn = ωo

mn − ωe
mn

}
(2.15)

and

|amm| > |amn| > |a∗
mn| > 0 ∀m, n. (2.16)

Rewrite (2.7) and (2.8) in terms of identities (2.11) and (2.12):

∂ζ9
−
m =

N ′∑
n=1

amn9
−
n −

N ′∑
n=1

a∗
mn9

+
n − Q−

m (2.17)

∂ζ9
+
m =

N ′∑
n=1

a∗
mn9

−
n −

N ′∑
n=1

amn9
+
n + Q+

m. (2.18)

Define the submatrices:

A = [amn] A∗ = [a∗
mn]

9± = {9±
m } Q± = {Q±

m}

}
. (2.19)

In (2.19),A andA∗ are dimensionless constant-coefficient square matrices and9± andQ±

are column vector-valued functions ofζ . Two particular cases are worth noting: for a pure
absorber,A is a diagonal andA∗ is a null matrix, and, with isotropic scatteringamn = −a∗

mn

for m 6= n, andamm > a∗
mm > 0. Note that the notationA∗ is not intended to mean the

conjugate matrix ofA and that should not introduce any confusion.
Equations (2.17) and (2.18) can be merged into onePL–SN matrix equation:

∂ζ

{
9−

9+

}
=

[
A −A∗

A∗ −A

] {
9−

9+

}
+

{ −Q−

Q+

}
. (2.20)

Further formal simplification of (2.20) may be obtained by defining the matrices:

9 = 9− ∪ 9+ ≡
{

9−

9+

}
Q ≡

{ −Q−

Q+

}
3 ≡

[
A −A∗

A∗ −A

]
. (2.21)

Then the reducedPL–SN matrix equation becomes

∂ζ9 = 39 + Q. (2.22)
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Vectors9 andQ of (2.22) are valued functions inζ , and3 is a dimensionless constant
coefficient matrix. Notice that, by inequalities (2.16),3 is diagonally dominant and none
of its diagonal terms are zero.

2.2. The boundary conditions

The conventional practice in discrete-ordinates formalism is to impose on (2.1), or
equivalently on (2.22), a natural boundary condition of entering fluxes at both edges of
the slab [8]. In the present analysis we will deviate from this practice and impose one-sided
boundary conditions atζ = 0:

entering flux:9+
0 ≡ 9+(ζ = 0)

exiting flux: 9−
0 ≡ 9−(ζ = 0)

}
⇔ 90 ≡ 9(ζ = 0). (2.23)

We recognize that this set of boundary conditions is not natural: entering and exiting
fluxes at the same boundary are assumed knowna priori. This is an admittedly unrealistic
assumption since9−

0 becomes available only after the solution is reached, but it is harmless.
This boundary condition is merely a matter of convenience intended to initiate the solution
for equation (2.22) over its domain of definition. The apparent inconsistency that the
solution,9−

0 , is itself a boundary condition is merely an introductory step in the solution.
We are by no means relieved from the constraint of entering flux-boundary condition9−

h

at the right edge of the slab, theh-boundary, or eventually a vacuum-boundary condition
9−

h = 0. The natural boundary conditions will be restored later in the solution.
The one-sided boundary condition was previously implemented in the solution of the

discrete-ordinates problem of neutron transport [6, 7]. The Laplace transform method was
used to solve the equations and that necessitated the use of this type of boundary condition.
In the present work we imposed this boundary condition on the problem intentionally and
it is not peculiar to the method of solution. It is formulated in this paper as a mathematical
tool with the expectation that it can be exploited in other types of problems governed by
second-order differential equation as well.

3. The closed-form solution

With the prescribed one-sided boundary conditions configurations (2.23), the formal solution
for (2.22) is trivial:

9 = eζ390 +
∫ 1

0
e(ζ−s)3Q(s) ds (3.1)

where the matrix exponential can be expressed in terms of the eigenvalues of matrix3. It
will be assumed throughout that vectorQ is such that the integral of (3.1) can be obtained
in closed form.

3.1. Properties of matrix3

The extraction of a physically meaningful solution from (3.1) depends largely on the
existence and the nature of the eigenvalues of3. Useful properties of matrix3 are
summarized by the following theorems.

Theorem 1.For any set{σt , σl} defined by (2.2), and for any evenN , matrix 3 hasN ′

distinct pairs of real opposite eigenvalues:

λ1 > λ2 > · · · > λN ′ > 0 > −λN ′ > · · · > −λ2 > −λ1.



7142 C H Aboughantous

Theorem 2.For n positive integer, thenth power of3 is a matrix of the form

3n =
[

Xn (−1)nYn

Yn (−1)nXn

]
whereXn andYn areN ′ × N ′ square matrices corresponding to thenth power of matrix3.

Corollary 1. The diagonal elements of submatrixYn are all 0,∀n even.

The proofs of these theorems by recursion are straightforward.
From theorem 2 we have

X1 = A Y1 = A∗

Xn = Xn−1A + (−1)n−1Yn−1A
∗ n > 2

Yn = Yn−1A + (−1)n−1Xn−1A
∗ n > 2

and

tr 3n = 0 n odd

tr 3n = 2 trXn n even.

3.2. The explicit statement of the solution

Let V k be the eigenvector corresponding to thekth eigenvalueλk, then the fundamental
matrix F(ζ ) of (2.22) is defined as follows:

F(ζ ) = [V 1eλ1ζ V 2eλ2ζ . . .][V 1 V 2 . . .]−1 (3.2)

where allλk are real. Then (3.1) becomes

9(ζ) = F(ζ )90 +
∫ ζ

0
F(ζ − s)Q(s) ds. (3.3)

By our choice of vectorQ, the integral in the right side of (3.3) can be evaluated in closed
form. In what follows, the source is assumed isotropic and uniformly distributed, but the
procedure of extracting the explicit solution from (3.3) is applicable to the general case of
a non-uniformly distributed source.

With Q a constant vector, the integration of matrixF(ζ − s) is elementary. Define the
square matrix

G(ζ) =
∫ ζ

0
F(ζ − s) ds. (3.4)

Then (3.3) takes the form

9 = F(ζ )90 + G(ζ)Q. (3.5)

Equation (3.5) is the general solution for (2.1) for the prescribed one-sided boundary
condition (2.23) represented by the vector90 = 9−

0 ∪9+
0 defined by (2.21). However, this

solution is incomplete. The exiting-flux vector9−
0 is yet to be determined. To complete

the solution, we seek an auxiliary equation from the solution itself. Partition the coefficient
square matrices in (3.5) as follows:

F(ζ ) =
[

811(ζ ) 812(ζ )

821(ζ ) 822(ζ )

]
(3.6)

and

G(ζ) =
[

011(ζ ) 012(ζ )

021(ζ ) 022(ζ )

]
(3.7)
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where submatrices8mn(ζ ) and 0mn(ζ ) are N ′ × N ′ matrix valued functions ofζ . Then
(3.5) may be reproduced as follows:{

9−

9+

}
=

[
811(ζ ) 812(ζ )

821(ζ ) 822(ζ )

] {
9−

0
9+

0

}
+

[
011(ζ ) 012(ζ )

021(ζ ) 022(ζ )

] {−Q−

Q+

}
. (3.8)

The first row in (3.8 ) may be evaluated atζ = 1 to obtain the following equation:

9−
h = φ119

−
0 + φ129

+
0 − g11Q

− + g12Q
+ (3.9)

whereφmn andgmn are dimensionless square matrices defined as follows:

φmn ≡ 8mn(ζ = 1)

gmn ≡ 0mn(ζ = 1)

}
. (3.10)

It is apparent that (3.9) contains only one unknown,9−
0 , the other flux vectors9+

0 and9−
h

are the natural boundary conditions.
Considering that the fundamental matrix is constructed from eigenvectors of3, i.e. its

columns are linearly independent, then matrixF(ζ ) and its partitionφ11 are not singular.
Hence, the inverse matrixφ−1

11 exists and (3.9) can be solved for the unknown vector9−
0 .

Therefore, (3.8) and the auxiliary equation (3.9) are the complete closed-form solution of
(2.1) with a uniformly distributed source, subject to the usual natural-boundary conditions
of entering fluxes at both edges of the slab. This is the pointwise form of the solution.

4. The end-points solution

The key success of this method lies in the fact that matrixφ11 is invertible. Evaluate the
second row in (3.8) atζ = 1 and substitute for9−

0 from (3.9) to obtain the following
expressions:

9−
0 = φ−1

11 9−
h + [−φ−1

11 φ12]9+
0 + [φ−1

11 g11]Q− − [φ−1
11 g12]Q+ (4.1)

9+
h = [φ21φ

−1
11 ]9−

h + [φ22 − φ21φ
−1
11 φ12]9+

0 − [g21 − φ21φ
−1
11 g11]Q−

+[g22 − φ21φ
−1
11 g12]Q+ (4.2)

where all the coefficients are square matrices. Equations (4.1) and (4.2) are expressions
for the exiting-flux vector at 0-boundary andh-boundary, respectively, as a concurrent
contribution from all entering fluxes at both edges of the slab (the natural boundary
conditions) and from the emission of source neutrons within the slab. Neither one of
these two equations contains information about the distribution of neutrons within the slab.
Hence, together (4.1) and (4.2) are theend-pointssolution for the transport equations (2.1).

4.1. The solution in radiation transport formalism

4.1.1. Radiative properties of a homogeneous slab.The coefficients in the right-hand sides
of (4.1) and (4.2) are dimensionless square matrices. They are special operators that extract
from the respective operands the appropriate contribution to the exiting flux at the specified
boundary. The physical significance of these operators may be extracted from the nature of
their operation on their operands. Of interest to our problem are the following properties.

(a) Transmittance.Without loss of generality, assume that the slab is sourceless, its
h-boundary is exposed to a boundary flux9−

h 6= 0 and its 0-boundary is a free surface
surrounded by a vacuum, i.e.9+

0 = 0. Let τ ≡ φ−1
11 . Then (4.1) reduces to

9−
0 = τ9−

h = φ−1
11 9−

h . (4.3)
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Considering thatφ11 is a diagonally dominant square matrix and is defined from
properties of the slab, thenτ itself is a property of the slab and all of its elements are
dimensionless and less than unity. On the other hand, it is apparent that expression (4.3)
is a transmission operation: on entering a backward flux vector9−

h at theh-boundary it is
then transmitted through the slab as vector9−

0 at 0-boundary. These properties adhere the
significance of atransmittance matrixof the slab toτ . Using tensor notation, (4.3) takes
the form

9−
0m = τn

m9−
hn m, n = 1, 2, . . . , N ′. (4.4)

In (4.4) and in all subsequent expressions the summation is implied on the repeated index.
The significance of (4.4) is that each row component ofτ projects the entering fluxes in all
n directions ath-boundary into one exiting flux in themth direction at 0-boundary.

In radiation theory, a scalar transmittance is defined as the ratio of the entering flux at
one boundary to the exiting flux at the opposing boundary. In neutronics, this definition
is expressed as the ratio of the exiting current, sayJ −

0 , to the entering currentJ−
h at the

opposite side of the slab:

τs = J−
0

J−
h

= $m9−
0m

$m9−
hm

(4.5)

where$m = wmµm. It is apparent from (4.5) thatτs is a property of the slab distinct from
τn
m: the former is a transformation inR, the latter inRN ′×N ′

. For a pure absorber we will
have

9−
0m = τm

m 9−
hm ⇒ τm

m = 9−
0m

9−
hm

6= J−
0

J−
h

= τs. (4.6)

Only in the particular case ofN = 2, doesτn
m reduce to the scalarτ 1

1 = τs for all slabs.
(b) Albedo.Without loss of generality, we assume that the slab is sourceless and without

the entering flux ath-boundary. Then (4.1) reduces to

9−
0 = α9+

0 = [−φ−1
11 φ12]9+

0 . (4.7)

The elements of matrixα defined by (4.7) are, like those ofφ−1
11 , dimensionless, less than

unity and are defined from physical and geometric properties of the slab. Therefore, matrix
α is another property of the slab. It extracts the appropriate fractions from the entering-flux
vector9+

0 at 0-boundary and projects them backwards as an exiting-flux vector9−
0 at the

same boundary; this is a reflection process. Considering that this reflection is ‘volumetric’,
i.e. from the whole slab as opposed to specular at the surface of the slab, operatorα takes
the meaning ofalbedo matrixof the slab. Using tensor notation, (4.7) reads

9−
0m = αn

m9+
0n m, n = 1, 2, . . . , N ′. (4.8)

It is apparent from (4.8) that themth row of matrixα transforms the entering fluxes in all
n directions at 0-boundary into one exiting flux in themth direction at the same boundary.

A scalar albedo is defined as the ratio of exiting current, sayJ−
0 , to the entering current,

sayJ +
0 , at the same boundary:

αs = J−
0

J+
0

= $m9−
0m

$m9+
0m

. (4.9)

Clearly, αs and αn
m are distinct: the former is a transformation inR, the latter inRN ′×N ′

.
Only in the particular case ofN = 2, the albedo matrix reduces to the scalarα1

1 = αs . Note
that in the case of a pure absorber,A∗ of (2.19) and henceφ12 of (4.7) are null matrices
with the resultα = 0 andαs = 0.
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(c) Radiance. Consider a slab with a distributed source and its edges are surrounded
by a vacuum. Assume further that no entrant-boundary fluxes are imposed on the slab, i.e.
9+

0 = 9−
h = 0. Then (4.1) reduces to

9−
0 = ρ−

0 = τ [g11Q
− + (−g12)Q

+]. (4.10)

Identity (4.10) expresses quantitatively the amount of source neutrons radiating outward
in the backward direction at 0-boundary. Hence, we ascribe toρ−

0 the significance of
radiance vectorof the slab at the prescribed boundary; the vectors embraced by square
brackets in (4.10) are backwardemittance vectorsevaluated ath-boundary by the operation
of g11 andg12 on the source vectors. Note, the simple explicit transformation of the source
into emittance vectors as in (4.10) is peculiar to the present application of a uniformly
distributed isotropic source. It is not expected to be that simple in the general case of
arbitrarily distributed sources.

4.1.2. The neutron-balance statement of the solution.In light of the foregoing, (4.1) may
be written as

9−
0 = τ9−

h + α9+
0 + ρ−

0 . (4.11)

An expression for the exiting flux ath-boundary formally similar to (4.11) can be obtained
simply by recognizing that the transport process through a homogeneous slab is invariant
under rotation of the slab about its axis of symmetry at the midplane. This is always true
in the following cases: a sourceless slab, and an isotropic source symmetric about the
midplane of the slab. It follows that by exchanging the roles ofα andτ in (4.11) we obtain
the expression for the exiting flux ath-boundary:

9+
h = α9−

h + τ9+
0 + ρ+

h . (4.12)

Equation (4.12) can be obtained directly from (4.2) in the same way (4.11) is obtained
from (4.1), with the results:

τ = φ−1
11 = φ22 − αφ12 (4.13)

α = −τφ12 = φ21τ (4.14)

ρ−
0 = τg11Q

− − τg12Q
+ (4.15)

ρ+
h = (g22 − αg12)Q

+ − (g21 − αg11)Q
− (4.16)

ρ+
h = ρ−

0 . (4.17)

Identity (4.17) holds in the present application of a uniformly distributed isotropic
source. It is also valid if the source is isotropic but otherwise symmetric about the
midplane of the slab. In the general case of an arbitrarily distributed anisotropic source
in a homogeneous slab, identity (4.17) is not valid andρ−

0 and ρ+
h should be calculated

separately.
Equations (4.11) and (4.12) are two uncoupled-expression solutions for the transport

equation. They are indeed two quantitative expressions for the neutron balance at the
boundaries of the slab, in the forward and the backward directions, and may be expressed
verbally as follows:

(exiting neutrons at a boundary)=


(neutrons transmitted through the slab)

+(reflected fraction of entering neutrons)

+(exiting neutrons that are produced within

the slab).
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Therefore, the Boltzmann equation, and its end-points solution, are merely two statements
of the neutron balance in a slab. The former is a balance in differential formalism, the latter
is algebraic.

4.2. Condensed and computational representation of the end-points solution

Equations (4.11) and (4.12) can be united into one matrix equation:{
9−

0
9+

h

}
=

[
τ α

α τ

] {
9−

h

9+
0

}
+

{
ρ−

0
ρ+

h

}
. (4.18)

Define the following matrices:

Exiting-flux vector: 9ex = [9−
0 9+

h ]T (4.19)

Entering-flux vector:9en = [9−
h 9+

0 ]T (4.20)

Slab-radiance vector:R = [ρ−
0 ρ+

h ]T (4.21)

Transport matrix:T =
[

τ α

α τ

]
. (4.22)

Then (4.18) reduces to the simple condensed form:

9ex = T9en + R. (4.23)

For computational purposes, however, it is more convenient to write the solution using
tensor notation as follows:

9−
0m = τn

m9−
hn + αn

m9+
0n + ρ−

0m

9+
hm = αn

m9−
hn + τn

m9+
0n + ρ+

hm

}
(4.24)

m, n = 1, 2, . . . , N ′.

In light of identity (4.17), the radiance terms of (4.24) are identically the same for each
directionm. The superscript plus and minus signs are used merely for notational consistency.

5. An application to the end-points solution

Consider the case of a homogeneous sourceless slab and suppose that its 0-boundary is
exposed to vector boundary flux9+

0 and itsh-boundary surrounded with vacuum. Then:

Leakage rate= {$ }T (α + τ)9+
0 (5.1)

Absorption rate= {$ }T (I − α − τ)9+
0 (5.2)

whereI is the identity matrix. Equation (5.2) is, indeed, the rate of production of new
atoms created within the slab. It can be used to calculate the rate of transmutations within
the material without recourse to extensive and expensive flux calculations within the slab.
Clearly, matrix6 = I − α − τ of (5.2) represents a neutron sink property of a slab. If
the slab is heterogeneous,α andτ of (5.1) and (5.2) should be replaced by their effective
values defined below.

6. The stratified slab problem

The end-points solution expressed by (4.24) is exact and theoretically valid for an arbitrarily
thick homogeneous slab. Unfortunately, finite arithmetics of digital systems imposes
limitations on the thickness of the slab. Large optical thicknesses could invalidate the
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answers by way of loss of significance. The largest possible thickness that preserves the
integrity of the answers from (4.24) is determined by the number of discrete ordinates, the
geometric thickness of the slab and the precision of the computing system.

It was shown that forN = 2, numerical stability requires that the largest optical
thickness of the slab should be such that the largest eigenvalueλ1 < 709 on a digital system
operating with 16 significant digits arithmetic. ForN > 2, and for a system operating withν
significant-digits arithmetic, it can be shown thatλ1 < γ = (ν+1) ln 10. The corresponding
geometric thickness of the slab ish < γµ1/σt which we will call theγ -thickness criterion;
µ1 is the smallest positive directional cosine defined on the set of discrete ordinates{SN }.
For ν = 16, we will haveγ ≈ 40 andλ1 < 40 ⇒ h < 40µ1/σt . Clearly, a 40-thickness
criterion is quite a severe limitation on the thickness of the slab. One way to avoid this
problem is to stratify the slab into strata obeying the 40-thickness criterion.

Two contiguous strata are said to be similar if they have the same material composition,
whether they have the same geometric thickness or not. In general two contiguous strata
are not similar. Therefore, a heterogeneous slab is already stratified but if any one of its
homogeneous strata is thicker than provided by theγ -thickness criterion, the stratum will
have to be stratified into similar strata so that each stratum satisfies the criterion.

For a stratified slab ofS strata, equation (4.24) may be written with indicial notation
for the sth stratum as follows:

9−
m,s = τn

m,s9
−
n,s+1 + αn

m,s9
+
n,s + ρ−

m,s

9+
m,s+1 = αn

m,s9
−
n,s+1 + τn

m,s9
+
n,s + ρ+

m,s+1

}
m, n = 1, 2, . . . , N ′; s = 1, 2, . . . , S

(6.1)

where s is the index for stratum; fluxes and radiances vectors are indexed bys at 0-
boundary ands + 1 at h-boundary of thesth stratum. We readily recognize that (6.1)
are the basis for an iteration algorithm to calculate fluxes at the boundaries of the slab,
and eventually the flux distribution within the slab, be it homogeneous or heterogeneous.
Numerical experimentations have shown that the most efficient iteration is the common
sweeping algorithm of the diamond-difference method [8]. In any one iteration, the fluxes
of the left side will be placed in the right side of the equations in the next iteration.

For the problem defined by (6.1) to be physically meaningful, it is imperative that all
iterates9(k) of the kth iteration are positive. In the case ofN = 2, this condition is
always satisfied for any positive initial guess of the fluxes. The proof is straightforward.
Unfortunately, this proof cannot be extended to the general case of arbitraryN . For L > 1
and largeN , some of the elements of matrixα could become negative. In that case it is
impossible to rigorously prove that all iterates9(k) are absolutely positive, nor is it possible
to prove that any one iterate could become negative simply because one or a few elements of
α are negative. We will assume that all iterates are positive. Our numerical experimentation
could not prove otherwise. Similarly, the proof that the iteration based on (6.1) converges
is not obvious. We have not encountered any convergence problem in our computations.

6.1. The method of Effective Albedo and Transmittance

The formal simplicity of (6.1) is somewhat misleading for it requires a large memory
allocation and a large number of flops per iteration especially for heterogeneous and thick
homogeneous slabs. An alternative approach to the iteration algorithm is possible. The
new method amounts to calculating Effective Albedo and Transmittance (EAT) matrices
of a slab from the matrices of the strata constituent of the slab. The method is valid for
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Figure 1. Nomenclature of boundary flux vectors
for a slab of thicknessh in x-representation and its
normalized thickness inζ -representation.

Figure 2. Nomenclature of flux vectors at the interfaces
of a composite slab.

both homogeneous and heterogeneous slabs provided that any one individual stratum is
homogeneous.

Consider two homogeneous sourceless slabs(a) and(b) characterized byαa, τa, αb and
τb. The two slabs may be considered as two strata of one slab(u) = (a) ∪ (b) that can be
a homogeneous or heterogeneous slab. Assume further that the two slabs are separated by
vacuum space, 0-boundary of slab(a) is exposed to a boundary flux9+

a0 andh-boundary
of slab(b) is left unexposed (figure 2).

If slab (a) were alone, the exiting flux at itsh-boundary would have been

9+
a1 = τa9

+
a0. (6.2)

In the presence of slab(b), this flux is going to be reflected by slab(b) as

9−
a1 = αbτa9

+
a0 (6.3)

and flux9−
a1 in turn is going to be reflected by slab(a) with the result that the exiting flux

at h-boundary of(a) becomes

9s+
a2 = 9+

a1 + αa9
−
a1. (6.4)

Rearrange (6.4) as follows:

9+
a2 = (I + Aab)τa9

+
a0 (6.5)

where

Aab = αaαb. (6.6)

The flux between the two slabs may be perceived as being ‘trapped’ in the cavity and it
continues to bounce on the two slabs indefinitely with the result:

9+
ah =

[ ∞∑
n=0

An
abτa

]
9+

a0. (6.7)

A necessary condition for the matrix power series in (6.7) to converge to a finite matrix
is that the largest eigenvalue of matrixAab is less than 1. This can be proven directly using
Sylvester’s theorem [9] in association with Cauchy test of convergence [10]. However, the
proof that this condition for convergence is always satisfied in the general case cannot be
rigorously proven for matrixAab. We will candidly assume that it is always satisfied in our
problem, otherwise (6.7) will yield9+

ah > 9+
a0, a violation to the principle of conservation

of neutrons in a sourceless slab.
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We recognize that the bracketed term of (6.7) is a transformation matrix that bears the
significance of a transmittance operator of slab(a) relative to slab(b) for neutrons moving
in the forward direction. Hence, we define a forwardeffective transmittanceof slab (a)

relative to slab(b) as

τ eff +
a = θabτa (6.8)

where

θab =
∞∑

n=0

An
ab. (6.9)

Clearly, matrix elements ofτ eff +
a must be such that‖τ eff +

a ‖ > ‖τa‖.
Further, the flux of (6.7) can be transmitted through slab(b) to obtain the exiting flux

at h-boundary of slab(b). It can be reflected one more time with slab(b) then transmitted
through slab(a) to obtain the exiting flux at 0-boundary of slab(a). This way the EAT
properties of the composite slab(u) for the forward flux are obtained:

τ eff +
u = τbτ

eff +
a (6.10)

αeff +
u = αa + τaαbτ

eff +
a . (6.11)

Finally, the exiting fluxes at the extreme edges of(u) can be calculated directly using the
EAT properties just calculated:

9−
u0 = αeff +

u 9+
u0 (6.12)

9+
uh = τ eff +

u 9+
u0. (6.13)

Continuing further, by recognizing that matrix product (6.6) is not commutative, in
general, thenαeff +

u andτ
eff +
u are valid only for forward-flux boundary conditions. Another

set of backward EAT properties of slab(u) that are valid for the backward flux can be
obtained. Consequently, the general end-points solution for (2.1) in the sourceless slab(u)

becomes

9−
u0 = τ eff −

u 9−
uh + αeff +

u 9+
u0 (6.14)

9+
uh = αeff −

u 9−
uh + τ eff +

u 9+
u0. (6.15)

Clearly, the forward and backward EAT matrices of slab(u) are not congruent except in
the particular case where slabs(a) and(b) are identical.

Now we proceed to include radiance vectors in (6.14) and (6.15). Suppose, for the
moment, that slab(a) contains a fixed distributed source. If the slab were alone surrounded
by vacuum, then its radiance vectorsρ−

a0 andρ+
ah are defined by (4.15) and (4.16). It can

be shown that in the presence of slab(b) we will have

ρ
eff +
ah =

∞∑
n=0

An
abρ

+
ah = θabρ

+
ah. (6.16)

Expression (6.16) is formally identical to expression (6.7) except that flux vectors are
exchanged with radiance vectors. It follows that the radiance vectors at the boundaries of
slab(u) are obtained by the same transformations applied to flux vectors with the results:

ρeff −
u = ρ−

a0 + τaαbθabρ
+
ah (6.17)

ρeff +
u = τbθabρ

+
ah. (6.18)

The effective radiance vectors(ERV) defined by (6.17) and (6.18) can now be inserted
in the right-hand sides of (6.14) and (6.15), respectively. Other expressions for ERV can
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be obtained for other prescribed source configurations by properly and orderly applying the
same transformations.

In the foregoing, slabs(a) and (b) are separated by a vacuum space. The derivations
continue to hold if the vacuum space is removed by bringing(a) and(b) into contact with
each other. In that case, the flux of (6.7) becomes the forward flux at a point within slab(u),
be it an arbitrary point within a homogeneous slab or the interface between two different
media constituents of a heterogeneous slab. That way, one can calculate the forward and
the backward fluxes at designated points within a slab to obtain the scalar flux and current
as desired.

The EAT method just described for two strata can be applied to a slab containing any
number of strata by merging one stratum at a time with previously merged strata. If the
strata are piled up in the sequence(a), (b), (c), . . . , (z), say from left to right, the merger
could be accomplished in the following sequence:

(u1) = (a) ∪ (b)

(u2) = (u1) ∪ (c) . . . etc.

At each step one should calculate the EAT and the ERV as appropriate. The number of
mergers in this approach is equal to the number of strata less 1.

As regards the seriesθrs , they converge fairly quickly. The rate of convergence increases
with the number of strata of a slab. This is because the strata become thin and the elements
of their albedo matrices become quite small, enough to guarantee convergence to the desired
precision with relatively small number of terms of the series. Also, since absorbers are poor
reflectors, the convergence of seriesθrs should be quite fast in absorptive media.

An important feature of the EAT method is that it enables calculating exiting fluxes at
the boundaries of the integrated slab without iterations thus saving a sizeable amount of
memory allocations and CPU time. However, we recognize that the 40-thickness criterion
could require large number of strata. This is particularly true if the slab is thick and a
solution with large number of discrete ordinates is sought.

In the particular case of a thick homogeneous slab, the merger of the strata can be
accelerated by merging(uk)s with themselves, e.g.:

(u1) = (a) ∪ (b)

(u2) = (u1) ∪ (u1)

(u3) = (u2) ∪ (u2) . . . etc. (6.19)

That is, if the slab is made up of 2n strata, onlyn mergers are needed to obtain the
transformation matrices for one integral slab. Also, in this case, the EAT properties are
invariant under rotation of a stratum about an axis at its midplane. Therefore, only one set
of forward (or backward) properties is needed.

7. Numerical results

We consider the case of a homogeneous slab, 100 cm thick, stratified by the 40-thickness
criterion in 2n strata for various values ofn. The thickness of each stratum and the number
of strata for eachn are shown in table 1. With this geometry, four neutronically different
materials are used for test calculations. For that purpose, we selected the scattering moments
shown in table 2 to demonstrate the performance of our numerical algorithms under extreme
deep-penetration conditions. Indeed, the optical thickness that is determinable to numerical
stabilities is the one defined along the direction given by the smallest directional cosineµ1.
In slab 4, this optical thickness is larger than 30 000 mfp; in slab 1 it is smaller than 10 mfp.
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Table 1. Number of strata in a 100 cm slab. The thickness of a stratum is expressed in units of
n and in centimetres.

No. of strata Stratum
n 2n thickness (cm)

0 1 100.000 000
2 4 25.000 000
3 8 12.500 000
4 16 6.250 000
5 32 3.125 000
6 64 1.562 500
7 124 0.781 250
8 256 0.390 625

Table 2. Macroscopic cross sections and scattering moments up toP5 for four slabs used in the
numerical calculations. All data are in cm−1.

Slab σt σ0 σ1 σ2 σ3 σ4 σ5

1 1.00 0.99 0.80 0.40 0.20 0.10 0.05
2 3.00 1.00 0.80 0.40 0.20 0.10 0.05
3 1.00 0.99 −0.80 −0.40 −0.20 −0.10 −0.05
4 3.00 1.00 −0.80 −0.40 −0.20 −0.10 −0.05

Table 3. Scalar flux at the boundaries of slab 1 for different discrete ordinatesN and different
orders of anisotropic scattering. The thickness of the slab is measured in units ofn, as in 2n.
All fluxes are in neutrons cm−2 s.

P1 scattering P3 scattering P5 scattering

ϕ0 ϕh ϕ0 ϕh ϕ0 ϕh

N n ×101 ×104 ×101 ×104 ×101 ×104

0 8.172 56 1.291 82
2 4 8.172 56 1.291 82 — — — —

6 8.172 56 1.291 82

3 8.222 56 1.235 29 8.230 26 1.245 75
4 6 8.222 56 1.235 29 8.230 26 1.245 75 — —

8 8.222 56 1.235 29 8.230 26 1.245 75

4 8.228 35 1.224 96 8.243 32 1.230 19 8.242 92 1.230 37
8 6 8.228 36 1.235 01 8.243 32 1.230 17 8.242 92 1.230 38

8 8.228 36 1.235 01 8.243 32 1.230 17 8.242 92 1.230 38

5 8.230 76 1.229 71 8.244 46 1.220 54 8.245 71 1.228 19
16 6 8.230 68 1.229 28 8.244 45 1.220 56 8.245 70 1.228 15

8 8.230 84 1.220 30 8.244 27 1.229 33 8.245 72 1.228 28

The calculations were made with four sets of discrete ordinatesN = 2, 4, 8 and 16.
For each set of discrete ordinates the largest eigenvalueλ1 was first obtained and the largest
acceptable thickness of a stratum was determined, in centimetres and inn units.

The first set of flux calculations were done using the EAT method with entering flux
boundary condition at 0-boundary:9+

0 = 1, and vacuum boundary condition ath-boundary.
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Table 4. Scalar flux at the boundaries of slab 2 for different discrete ordinatesN and different
orders of anisotropic scattering. The thickness of the slab is measured in units ofn, as in 2n.
All fluxes are in neutrons cm−2 s.

P1 scattering P3 scattering P5 scattering

ϕ0 ϕh ϕ0 ϕh ϕ0 ϕh

N n ×101 ×10120 ×101 ×10115 ×101 ×10115

0 5.119 12 8.16(−39)∗
2 4 5.119 12 8.16(−39) — — — —

6 5.119 12 8.16(−39)

5 5.181 83 0.005 82 5.167 72 0.002 98
4 7 5.181 83 0.005 82 5.167 72 0.002 98 — —

8 5.181 83 0.005 82 5.167 72 0.002 98

6 5.197 11 2.707 23 5.188 31 2.791 68 5.187 69 4.483 61
8 7 5.197 11 2.707 23 5.188 31 2.791 68 5.187 69 4.483 61

8 5.197 11 2.707 23 5.188 31 2.791 68 5.187 69 4.483 61

5 — — — — — —
16 6 5.200 65 2.749 17 5.198 94 3.495 98 5.191 51 4.281 69

8 5.200 65 2.737 01 5.198 94 3.514 85 5.191 51 4.260 24

∗ read 8.16× 10−39.

Table 5. Scalar flux at the boundaries of slab 3 for different discrete ordinatesN and different
orders of anisotropic scattering. The thickness of the slab is measured in units ofn, as in 2n.
All fluxes are in neutrons cm−2 s.

P1 scattering P3 scattering P5 scattering

ϕ0 ϕh ϕ0 ϕh ϕ0 ϕh

N n ×101 ×1011 ×101 ×1011 ×101 ×1011

3 9.299 50 1.107 79 9.300 48 1.085 72
4 6 9.299 50 1.107 69 9.300 49 1.085 70 — —

8 9.299 50 1.107 69 9.300 49 1.085 70

4 9.298 54 1.104 23 9.297 62 1.090 78 9.297 41 1.078 00
8 6 9.298 54 1.104 27 9.297 41 1.086 00 9.297 70 1.085 62

8 9.298 54 1.104 27 9.297 41 1.086 00 9.297 70 1.085 62

5 9.298 34 1.103 77 9.296 70 1.079 27 9.296 57 1.080 27
16 6 9.298 36 1.104 20 9.296 57 1.079 27 9.296 84 1.083 11

8 9.298 36 1.104 31 9.296 56 1.079 37 9.296 83 1.082 70

The results of calculations are shown in tables 3, 4, 5 and 6 for all the slabs of table 2.
We recognize that all fluxes are positive, despite that in many cases elements of the albedo
matrix were negative. Indeed, we tested many other sets of cross sections. No negative
fluxes were observed for as long as the thickness of any stratum is determined by the
γ -criterion. All calculations were made on a PC-486 66 MHz using 16 significant digits
arithmetic.

Another set of calculations were made using the iteration method formulated by (6.1).
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Table 6. Scalar flux at the boundaries of slab 4 for different discrete ordinatesN and different
orders of anisotropic scattering. The thickness of the slab is measured in units ofn, as in 2n.
All fluxes are in neutrons cm−2 s.

P1 scattering P3 scattering P5 scattering

ϕ0 ϕh ϕ0 ϕh ϕ0 ϕh

N n ×101 ×10134 ×101 ×10136 ×101 ×10137

4 5.748 91 8.72(−21)∗ 5.762 21 7.44(−25)
4 6 5.748 91 8.72(−21) 5.762 22 7.44(−25) — —

8 5.748 91 8.72(−21) 5.762 22 7.44(−25)

5 5.728 67 4.38(−5) 5.754 42 1.02(−7) 5.804 50 1.11(−7)

8 6 5.736 95 4.56(−5) 5.746 88 1.68(−7) 5.747 95 7.89(−8)

8 5.736 95 4.56(−5) 5.746 88 1.68(−7) 5.747 95 7.89(−8)

6 5.725 48 7.24(+7) — — — —
16 7 5.733 94 2.452 31 5.743 00 5.588 07 5.743 81 6.989 07

8 5.733 94 2.496 04 5.743 00 5.628 73 5.743 81 6.899 03

∗ Read 8.72× 10−21.

The convergence of the scalar flux was determined by the condition:∣∣∣∣ϕ(k) − ϕ(k−1)

ϕ(k)

∣∣∣∣ < 10−7

whereϕ is the scalar flux andk the index of the current iteration. The same four slabs of
table 2 were used. The results are identical to those obtained with the EAT method. Table 7
shows the fluxes at the boundaries of slab 1 and for the case ofP1 scattering; the other
data are not reproduced in the interest of minimizing redundancy. The number of iterations
needed to achieve convergence is quite large in this slab. In strongly absorbing slabs, the
convergence is achieved within five iterations or less. In all calculations, we purposely
avoided the implementation of any acceleration scheme to reveal the native characteristics
of the method.

We compared our results of slab 1 in the case of linear anisotropy with those obtained
with the SGF method [4]. They are identically the same up toN = 8 discrete ordinates;
the SGF method works with linear anisotropy and cannot produce results forN > 8. By
recognizing that the SGF calculations were compared with those obtained with the diamond-
difference method [4], our method is, in effect, compared with the diamond-difference
method. These comparisons show a net advantage in favour of the solution presented in
this paper.

It is apparent from the results shown that the iteration method and the EAT method are
equally good with respect to the precision of the flux. They produce identically the same
flux except for a few anomalies illustrated in the flux ath-boundary shown in table 7 for
{N, n} = {8, 8}. It takes an additional four iterations to converge to the same flux obtained
with n = 6. This was accomplished by squeezing the convergence criterion to 10−8.

Despite that the two methods produce the same flux, the preference is in favour of
the EAT method. It is less demanding in memory allocation and it is faster than the
iteration method. The iteration method begins to develop, as the EAT method does, after
the transformation matrices are calculated for all strata. From that point further, more
additional memory will have to be allocated and more computing time will be needed to
perform the iteration than to calculate the EAT matrices.
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Table 7. Scalar flux at the boundaries of slab 1 calculated using the iteration algorithm inP1

scattering, for different discrete ordinatesN . The thickness of the slab is measured in units of
n, as in 2n. All fluxes are in neutrons cm−2 s.

ϕ0 ϕh

N n Iter. ×101 ×104

0 1 8.172 56 1.291 82
2 4 23 8.172 56 1.291 82

6 63 8.172 56 1.291 82

3 29 8.222 56 1.235 29
4 6 64 8.222 56 1.235 29

8 99 8.222 56 1.235 29

4 37 8.228 35 1.224 96
8 6 60 8.228 36 1.225 01

8 94 8.228 36 1.225 05

5 47 8.230 76 1.229 71
16 6 58 8.230 68 1.229 27

8 89 8.230 84 1.230 30

Another observation of merit is that, if the thickness of a stratum is the same, or
slightly larger than theγ -thickness, the EAT method produces positive fluxes with the false
impression that this is the solution to the problem at hand. We reproduced this situation
in table 6 for{N, n} = {8, 5} and {16, 6}. The fluxes are positive but they are the wrong
solution; the iteration method diverges, or it gives negative fluxes in these cases. Therefore,
the validity of the EAT method requires strict adherence to theγ -thickness criterion as no
evidence of wrong answers will develop unless the thickness of the strata is substantially
larger than theγ -thickness.

It was observed that, forN > 4, some of the elements of matrixα take negative values
whetherσl are positive or negative. In most cases an efficient remedy was to increase, or
to decreaseL by 2; the negative matrix elements then reverse to positive ones. In all cases,
no negative flux was observed.

8. Summary

It is apparent from the foregoing that the closed-form solution to the discrete-ordinates
transport equation can be expressed in pointwise form, or in end-points form without
recourse to integral transforms. The distinct features of the proposed method are its ability
to work with an arbitrary order of anisotropic scattering and the control of the round-off
error.

Another feature of the proposed method is the one-sided boundary conditions. We
converted the traditional one-dimensional neutron-transport problem, which is in effect a
boundary-value problem, to another one functionally equivalent to an initial value problem
in space. The domain of definition of this problem is, unlike the traditional initial value
problem, closed by an upper bound equal to the spatial thickness of the slab. A constraint
extracted from the solution itself and introduced as an auxiliary equation completed the
closure of the solution.

One advantage of the proposed method is that it does not require a particular solution.
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To the best of our knowledge, all non-integral transform methods previously discussed in the
literature of discrete ordinates requirea priori knowledge of a particular solution, the SGF
method [4] is an illustration. Another advantage of the method is its excellent adaptability
to numerical computations on a digital system. The round-off error is quite under control
by theγ -thickness criterion.

The proposed method is devoted to the one-dimensional plane geometry problem in
the one-speed approximation. The extension of the method to the multigroup problem
is conceptually simple: develop a multigroup3 matrix with group-to-group transfer
submatricesAg→g′ , and A∗

g→g′ , or solve the group equation and use the solution as a
source term in the equations for the lower groups. In the former approach,3 becomes a
large sparse matrix. In the latter, the development of a recursive solution for systematic
computations becomes imperative. We will examine this aspect of the problem in the future
along with the extension of the method to the multidimensional geometry.

References

[1] Chandrasekhar S 1950Radiative Transfer(Oxford: Oxford University Press)
[2] Davison B 1958Neutron Transport Theory(Oxford: Oxford University Press)
[3] Larsen E W 1986 Spectral analysis of numerical methods for discrete ordinates problemTrans. Theor. Stat.

Phys.15 93
[4] DeBarros R C and Larsen E W 1990 A numerical method for one-group slab-geometry discrete ordinates

problems with no spatial truncation errorNucl. Sci. Eng.104 199
[5] DeBarros R C and Larsen E W 1992 A spectral nodal method for one-groupx, y-geometry discrete ordinates

problemNucl. Sci. Eng.111 34
[6] Barichello L B and Vilhena M T 1993 A general analytic approach to the one-group, one-dimensional

transport equationKerntechnik58 3
[7] Vilhena M T and Barichello L B 1995 An analytical solution for the multigroup slab geometry discrete

ordinates problemsTrans. Theor. Stat. Phys.24 9
[8] Lewis E E and Miller Jr W F 1984Computational Methods of Neutron Transport(New York: Wiley)
[9] Frazer R A, Duncan W J and Collar A R 1938 Elementary Matrices(Cambridge: Cambridge University

Press)
[10] Oden J T 1979Applied Functional Analysis(Englewood Cliffs, NJ: Prentice-Hall)


